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We have developed analytical and numerical methods to study the transport of noninteracting particles in
large networks consisting of M d-dimensional containers C1 , . . . ,CM with radii Ri linked together by tubes of
length lij and radii aij where i , j=1,2 , . . . ,M. Tubes may join directly with each other, forming junctions. It is
possible that some links are absent. Instead of solving the diffusion equation for the full problem we formu-
lated an approach that is computationally more efficient. We derived a set of rate equations that govern the time
dependence of the number of particles in each container, N1�t� ,N2�t� , . . . ,NM�t�. In such a way the complicated
transport problem is reduced to a set of M first-order integro-differential equations in time, which can be solved
efficiently by the algorithm presented here. The workings of the method have been demonstrated on a couple
of examples: networks involving three, four, and seven containers and one network with a three-point junction.
Already simple networks with relatively few containers exhibit interesting transport behavior. For example, we
showed that it is possible to adjust the geometry of the networks so that the particle concentration varies in time
in a wavelike manner. Such behavior deviates from simple exponential growth and decay occurring in the
two-container system.
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I. INTRODUCTION

The goal of this work is to find a method that describes
the diffusive transport of particles on a network built up of
spherical containers connected by tubes. It is possible that
not all containers are connected to each other and tubes may
join together, forming junctions �without a container being
present�. In such a way one can generate an enormous num-
ber of network topologies. One example is shown in Fig. 1.
The networks consists of M containers �reservoirs� labeled
C1 , . . . ,CM of radii Ri connected by tubes of length lij and
radii aij where i , j=1,2 , . . . ,M.

Our work is motivated by experiments discussed in Refs.
�1–3� and �4–6�. The first set of references describes how to
create and manipulate microscale-sized compartments
�vesicles� connected by nanotubes. These structures can be
applied in a number of ways �3�. For example, nondiffusive
�forced� transport was studied in �1�. In this work we study
different kinds of transport where only passive diffusion is
allowed. Also, by including the reactions in the theoretical
setup one could describe biochemical reactions in a milieu
close to their natural habitat. This idea was pursued experi-
mentally in Ref. �2�.

The second set of references deals with networks of
chemical reactors of macroscopic sizes connected to each
other by tubes. The exchange of reactants is mediated
through the tubes and controlled by pumps. It was shown
that it is possible to use this device to carry out pattern rec-
ognition tasks. In making the device smaller the external
pumping can be removed and the transport can be limited to
pure diffusion. This kind of setup is close to the situation
studied here.

For large networks, links connecting opposite sides of the
network may be rather long. Accordingly, one cannot expect
an exponential decay of the number of particles in the con-
tainers and this is the situation we are mostly interested in.
Obviously, to describe such a situation one can attempt to
solve the diffusion equation numerically and obtain the dis-
tribution function ��r� , t� that describes how particles spread
throughout the network.

Obtaining the solution of the diffusion equation for a
complicated geometry for a large networks gets highly im-
practical. In this work we develop a method of calculation
that is computationally efficient and can be used to study
transport in large networks. Instead of finding the full distri-
bution function ��r� , t� we introduce a set of slow variables
that capture the most important aspect of particle transport,
the number of particles in each container
N1�t� ,N2�t� , . . . ,NM�t�, and derive equations that describe
how they change in time. This is the central result of the
paper.

A couple of related problems have been addressed previ-
ously in Refs. �7–11�. Escape of a particle through a small
hole in a cavity was studied in �7�. The work of �8� deals
with the problem of a hole connected to a short tube. The
tube length and hole radius are roughly of the same size,
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FIG. 1. Schematic picture of an arbitrary network built from
containers and tubes.
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mimicking a cell membrane having a thickness greater than
zero. A couple of equilibration cases have also been studied
�9–11�. The papers just indicated treat the intracontainer dy-
namics in much more detail than we do. Here, for simplicity
reasons, the particle concentration is assumed flat in the con-
tainer and the validity of this approximation is checked nu-
merically in Sec. VII. In our notation, the studies �7–11� can
be classified as M =1,2 cases. Our main interest is in net-
works with large M.

This paper is organized as follows. In Sec. II the problem
is defined and the general results are stated. The derivation of
the rate equation given in Eq. �3�, is explained in Secs. III
and IV where the emptying of a single container into a tube
and the emptying of a container into another container
through the tube are studied. The single-exponential asymp-
totics of the two-container system and related first-order rate
equations are found and discussed in Sec. V. Up to this point
only a two-container system is treated while Sec. VI deals
with an arbitrary network topology. Section VII elaborates
on the assumption of well-stirred containers. A numerical
comparison to the diffusion equation is made. In Sec. VIII
numerical case studies of various network structures are per-
formed. In particular a three-way junction and an example of
a larger network are studied. The summary and outline of
future work is given in Sec. IX. Technical details are found
in the Appendixes. Appendix A describes the numerical pro-
cedure used for solving the rate equations. The rate equations
for the cases studied in Sec. VIII are explicitly derived in
Appendix C. It can be shown that the presence of tube junc-
tions can be eliminated altogether from the dynamical equa-
tions when the time is large. This is demonstrated in Appen-
dix D.

II. PROBLEM DEFINITION AND MAIN RESULT

Describing the particle transport in a network depicted in
Fig. 1 is far from trivial, and in order to solve the problem
several assumptions are made. We assume that �i� particles
move solely by diffusion �the fluid in which the particles
move stands still� and �ii� particles do not disturb each other.
With these assumptions the complicated dynamical problem
at hand is reduced to solving the time-dependent diffusion
equation

�t��r�,t� = �� · �D�r���� ��r�,t�� . �1�

Here ��r� , t� is the concentration �particle density� and D�r�� is
the diffusion coefficient which may be position dependent.
The walls are particle impenetrable,

�n��r�,t� = 0, �2�

where �n� n̂ ·�� and n̂ is the unit vector perpendicular to the
wall. The total number of particles is a conserved quantity.

Equation �1� could in principle be solved numerically us-
ing a brute force approach �e.g., the finite-element method or
the finite-difference method�. However, in Secs. III and IV
we will show that it is possible to describe particle transport
in terms of a finite number of variables, the number of par-
ticles in each container, N1 , . . . ,NM. Also, it might be easier

to understand particle transport in such a setup. The dynam-
ics of Ni�t�, i=1, . . . ,M, is governed by

Ṅi�t� = �
j=1

M

C ji
Vd−1�aji�
Vd�Rj�

�
0

t

dt�N j�t��� ji�t − t��

− �
j=1

M

Cij
Vd−1�aij�
Vd�Ri�

�
0

t

dt�Ni�t����ij�t − t�� + �ij�t − t��� ,

�3�

where

Ni�t� � Ṅi�t� + Ni0��t� �4�

and ��t� is the Dirac delta function, �0
�dt��t�=1. Here and in

the following the overdot denotes time derivative. The con-
nectivity matrix Cij � 	0,1
 describes how the nodes are
linked �note that Cii=0�, aij is the radius of the tube �link�
from i to j, and Vd�Rj� is the volume of a d-dimensional
sphere, Vd�r�= �2	d/2 /d
�d /2��rd, corresponding to con-
tainer j having radius Rj. Ni0 denotes Ni�t=0�. Equation �3�
is derived under the assumption of ideally mixed containers.
The rate coefficients are given by

�ij�t� =�Dij

	t
,

�ij�t� = 2�Dij

	t
�
k=1

�

exp�−
�k�ij�2

Dijt
 ,

�ij�t� = 2�Dij

	t
�
k=0

�

exp�−
��2k − 1��ij�2

4Dijt
 . �5�

�ij is the link length, and Dij is the corresponding diffusion
coefficient. The theory is developed for the general case
where the diffusion constant in each tube may be different.

Figure 1 also shows the existence of tube junctions. They
are treated by Eq. �3� by letting the container radius coincide
with that of the tube. Since the tubes are initially empty, so
are the junctions, Ni0=0. Equations �3�–�5� are the central
results of this paper, and their derivation is a major topic of
the subsequent sections.

III. EMPTYING OF A RESERVOIR THROUGH AN
INFINITELY LONG TUBE

To derive Eq. �3� we start with the simplest possible case
and consider particle escape from a container through an
infinitely long tube �see Fig. 2�a��. The main reason for this
is to show how to couple the dynamics of the tube and con-
tainer. Also, such a setup captures the short-time description
of the full network problem when the particles escaping the
containers do not yet “feel” that the system is closed �the
short-time dynamics is contained in ��t�; see Sec. IV�.

The particle concentration ��r� , t� is governed by the dif-
fusion equation supplemented with the boundary conditions
that the walls be impenetrable and that ��r� , t� vanish for x
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→�. The concentrations in the tube and container are inter-
woven in a highly nontrivial way through what is occurring
at the tube opening. Given that the current density out of the
container j�0,y ,z , t� is known �see Fig. 2�a�� one could solve
the diffusion problem and find the concentration profile in
the container and the number of particles. Furthermore, one
could find a relationship

��0−,y,z,t� = F�j�0,y,z,t�� , �6�

where j�0,y ,z , t�=−D limx→0− x̂ ·�� ��x ,y ,z , t�. F is a func-
tional that we know exists but is unlikely to be found in a
closed analytic form.

To find j�0,y ,z , t� it is assumed that the concentration in
the vicinity of the tube opening can be approximated by

��x,y,z,t� = f�y,z,t�c�x,t�, x � 0, �7�

where c�x , t� is a one-dimensional concentration and f�z ,y , t�
is a function that projects the value of c�x , t� onto a radial
direction. Equation �7� is valid for large x when f�y ,z , t� is
constant but not in the general case. The arbitrary density
profile at the opening will in time smear out due to radial
diffusion.

By assumption, the concentration profile in the tube is
governed by c�x , t� and it is coupled to the concentration in
the container as follows. Both concentration and current have
to be continuous as one moves from the container into the
tube, leading to

��0,y,z,t� = f�y,z,t�c�0,t� �8�

and

j�0,y,z,t� = f�y,z,t� lim
x→0+

�

�x
c�x,t� . �9�

Note that limx→0+�� /�x�c�x , t� in Eq. �9� is a functional of
c�0, t�. Taking into account particle conservation at the tube
opening leads to

�
x=0

dS��0,y,z,t� = c�0,t� , �10�

which after using Eq. �8� results in the condition
�dSf�y ,z , t�=1. The problem has four unknowns ��0,y ,z , t�,
j�0,y ,z , t�, c�0, t�, and f�y ,z , t� and four equations �6� and
�8�–�10� and is fully defined. However, it is not tractable in
this complicated form and we proceed to simplify it.

Instead of ��r� , t� a more useful variable is the total num-
ber of particles in the container N�t�=�x�0dV��r� , t� governed
by

Ṅ�t� = − J�t� , �11�

where J�t� is the flow of particles that leave the container
through the tube opening J�t�=�dSj�0,y ,z , t�. There are two
special cases where the current J�t� can be determined ana-
lytically in terms of container variables. �i� If the exit is a
fully absorbing disk with radius a, the concentration is al-
ways zero at the the interface ��0,y ,z , t�=0. In �12� it is
shown that the current J� through such a disk when placed at
an infinite otherwise reflecting wall is J�=4Dca�� where ��

is the particle concentration at infinity and Dc denotes the
diffusion constant in the container. A reasonable assumption
for the container, at least when the tube radius is smaller than
the radius of the container, is that the concentration profile
far away from the exit is flat and can approximately be
taken to be N�t� /Vd�R�. Using this for �� yields J��t�
=4DcaN�t� /Vd�R�. �ii� If the opening is completely closed,
the current is zero and ��0,y ,z , t�=N�t� /Vd�R� �in such a
case N�t�=N�0��. A linear interpolation between �i� and �ii�
yields

FIG. 2. �a� A spherical compartment connected to a cylindrical
infinitely long tube. If the tube radius is assumed to be small, the
compartment can be treated as ideally mixed at all times, simplify-
ing the dynamics in the container. The transport in the tube is re-
duced to a one-dimensional diffusion problem. Panel �b� illustrates
these simplifications.

FIG. 3. Behavior of f�y ,z , t� defined in Eq. �7� for the two-
dimensional system shown in Fig. 9 �panel �a�, a /R=0.1� at three
different instants of time t1� t2� t3. The graph verifies the assump-
tion that f�y ,z , t� is approximately constant. In this two-dimensional
case f�y , t�→1/2a as t→�.
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��0,y,z,t� =
N�t�

Vd�R��1 −
J�t�
J��t�� . �12�

Note that, in Eq. �12�, ��0,y ,z , t� is assumed constant across
the interface. This approximation is verified numerically in
Fig. 3, which shows f�y ,z , t��Vd−1�a�−1. Also, when aR
one has J�t� /J��t�1 and second term in Eq. �12� can be
neglected. This approximation is verified by numerical cal-
culations in Sec. VII.

At this point, the full problem has been mapped onto a
very simple geometry depicted in Fig. 2�b�: a one-
dimensional line �tube� connected to a point �container�. The
tube dynamics is characterized by a one-dimensional particle
density c�x , t� along the line, and all container dynamics,
how complicated it may be, has been projected on to a single
variable N�t�.

The only part of the problem that remains to be solved is
the diffusion through the tube. This part of the problem can
be approximated by one-dimensional diffusion since f�y ,z , t�
is constant. The constant concentration profile at the tube
opening remains such in the tube interior �provided the tube
radius does not change along the x direction�. With the as-
sumptions at hand the coupling Eq. �8� becomes

c�0,t� = Vd−1�a�
N�t�

Vd�R�
. �13�

The concentration profile along the tube �initially empty
c�x ,0�=0� is given by the diffusion equation

�c�x,t�
�t

= D
�2c�x,t�

�x2 , x � �0,�� , �14�

supplemented with boundary conditions according to Eq.
�13� and c�� , t�=0. The solution can be found by the Laplace
transform method �13� and is given by

c�x,s� = c�0,s�e−x�s/D, �15�

where c�x ,s�=�0
�dtc�x , t�e−st. Integrating Eq. �9� over the

tube interface area at x=0 gives

J�t� = − D lim
x→0

�

�x
c�x,t� . �16�

Combining Eqs. �11�, �13�, and �16� leads to a rate equation
in the Laplace transform space:

sN�s� − N0 = − lim
x→0

�sDN�s�
Vd−1�a�
Vd�R�

e−x�s/D

= − �sDN�s�
Vd−1�a�
Vd�R�

, �17�

where L�Ṅ�t��=sN�s�−N0. It is tempting to rewrite this
equation in the time domain in the form of a convolution,

Ṅ�t� = − �
0

t

dt�k�t��N�t − t�� , �18�

representing a general form of a rate law, where k�t�
= �Vd−1�a� /Vd�R��L−1��Ds�. However, this is impossible and
can be seen in several ways.

First, �s has no well-defined inverse Laplace transform
and k�t�, which would enter into the rate equation �18�, is ill
defined. Second, this problem could possibly be resolved by
inverting Eq. �15� to obtain c�x , t� and inserting the result
into Eq. �16� which leads to

J�t� � − lim
x→0

�

�x
�

0

t

dt�
x

t�3/2e−x2/4Dt�N�t − t�� . �19�

In general N�t� is unknown. To evaluate the expression above
in a way that would result in a rate equation involves inter-
changing derivation and integration. This is only allowed if
the integral is uniformly convergent in the interval x
� �0,�� �14�. It is easy to see from Eq. �19� that this is not
the case and the interchange is illegal. Another possibility is
to use partial integration but this strategy does not work
since one ends up with nonconvergent integrals as x→0.
Thus, Eq. �18� does not exist for the semi-infinite case. Also,
it is intuitively clear that one cannot observe pure exponen-
tial decay since the system is infinite.

For an infinite system an asymptotic rate law of the type

Ṅ�t��−N�t� simply does not exist. This can also be seen
from the exact expression for N�t� which can be obtained
from Eq. �17� by solving for N�s� and finding the inverse
Laplace transform �13�:

N�t� = N0 exp�Dt�Vd−1�a�
Vd�R�

2�erfc��Dt
Vd−1�a�
Vd�R� � .

�20�

N0 is the initial number of particles in the container. Using
approximation

erfc�z� �
e−z2

�	

1

z

for large z gives N�t��1/�t.
Due to the complications discussed above, the rate equa-

tion has to be stated in terms of Ṅ�t�:

Ṅ�t� = −
Vd−1�a�
Vd�R�

L−1�sN�s��D

s
�

= −
Vd−1�a�
Vd�R� �0

t

dt�N�t����t − t�� , �21�

where

N�t� � L−1�sN�s�� = Ṅ�t� + N0��t� �22�

and
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��t� � L−1��D

s
� =�D

	t
. �23�

Note that it is impossible to rewrite the right-hand side of Eq.
�21� in such a way that it would solely involve a dependence
on N�t�. When the system is closed �e.g., by adding another
container� the situation changes.

IV. RATE EQUATION FOR A TWO-CONTAINER SYSTEM

The system under consideration consists of a one-
dimensional rod parametrized by a and � connected to two
ideally mixed containers having radii R1 and R2, depicted in
Fig. 4.

The diffusion equation for the tube �initially empty,
c�x , t�=0� connected to the two containers at x=0 and x=� is
given by

�c�x,t�
�t

= D
�2c�x,t�

�x2 , x � �0,�� , �24�

with boundary conditions analogous to Eq. �13�:

c�0,t� = N1�t�
Vd−1�a�
Vd�R1�

, c��,t� = N2�t�
Vd−1�a�
Vd�R2�

. �25�

The solution in Laplace transform space is given by

c�x,s� =
Vd−1�a�
Vd�R1�

sN1�s��1�x,s� +
Vd−1�a�
Vd�R2�

sN2�s��2�x,s� ,

�26�

where

�1�x,s� =
sinh��x − ���s/D�

s sinh���s/D�
, �2�x,s� =

sinh�x�s/D�

s sinh���s/D�
.

�27�

Matching the current at both ends as in Eq. �16�,

Ṅ1�t� = D lim
x→0

�

�x
c�x,t� ,

Ṅ2�t� = − D lim
x→�

�

�x
c�x,t� , �28�

yields a set of rate equations in Laplace transform space for
the two-container system:

sN1�s� − N10 = − sN1�s�
Vd−1�a�
Vd�R1�

�D

s

cosh���s/D�

sinh���s/D�

+ sN2�s�
Vd−1�a�
Vd�R2�

�D

s

1

sinh���s/D�
,

�29a�

sN2�s� − N20 = − sN2�s�
Vd−1�a�
Vd�R2�

�D

s

cosh���s/D�

sinh���s/D�

+ sN1�s�
Vd−1�a�
Vd�R1�

�D

s

1

sinh���s/D�
.

�29b�

The terms having minus signs are the outflow while the
ones having plus signs represent the inflow. A closer look at
the the rate equations above reveals an important link to the
semi-infinite case: the outflow is proportional to �s for large
t �small s�. In other words, the semi-infinite case is recovered
as a short-time expansion of Eqs. �29� �see Sec. III�. The
physical interpretation is that, initially, the particles feel as if
they were entering an infinitely long tube. This implies that
the outflow term can be divided into two parts reflecting this
observation:

�D

s
� cosh���s/D�

sinh���s/D�
� � ��s� + ��s� . �30�

��s� is taken from Eq. �23� and controls the short-time dy-
namics that resembles the one of the semi-infinite system.
��s� describes the asymptotic long-time behavior when the
particles are “aware” of the existence of another side and can
be found from Eqs. �23� and �30�:

��s� =�D

s

exp�− ��s/D�

sinh���s/D�
. �31�

The inflow rate is labeled ��s�:

FIG. 4. Schematic picture of a two-node network.

FIG. 5. Time dependence of the rate coefficients ��t�, ��t�, and
��t� from Eq. �3�.
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��s� =�D

s

1

sinh���s/D�
. �32�

The inverse Laplace transforms of ��s�, ��s�, and ��s� are
shown in Eq. �5� and depicted in Fig. 5. The long-time be-
havior of ��t� and ��t� can be found from a small-s expan-
sion of Eqs. �31� and �32�:

��t� �
D

�
−�D

	t
,

��t� �
D

�
�1 − exp�−

6Dt

�2 � . �33�

Taking the limit t→� yields

���� =
D

�
, ���� =

D

�
. �34�

It is more convenient to express the rate equations �29� in
time domains:

Ṅ1�t� =
Vd−1�a�
Vd�R2� �0

t

dt�N2�t����t − t�� −
Vd−1�a�
Vd�R1� �0

t

dt�N1�t��

����t − t�� + ��t − t��� , �35a�

Ṅ2�t� =
Vd−1�a�
Vd�R1� �0

t

dt�N1�t����t − t�� −
Vd−1�a�
Vd�R2� �0

t

dt�N2�t��

����t − t�� + ��t − t��� . �35b�

��t� and ��t� are not present in the rate equation for the
semi-infinite case �see Eq. �21�� and arise only when the
system is finite.

A numerical solution to Eqs. �35� is shown in Fig. 6 �see

Appendix A for a more elaborate discussion regarding the
numerical procedure�. The number of particles decays expo-
nentially which is verified in Fig. 7 where the straight line
attained after some time is evidence of a single-exponential
decay. The figure also shows a nonexponential regime for
small t, described by ��t�. Terms proportional to ��t� are in
the following referred to as � terms.

For small t particles rush into the tube with a large cur-

rent. At t=0 the current is infinite, limt→0 Ṅ1�t�=�. Thus,
exactly at t=0 it is impossible to define the exit rate from
container and such a situation extends to any other time in-
stant. In a strict mathematical sense, it is impossible to define
exit rate from the container for any t�0 �when the concen-
tration profile at the tube opening is different from zero�.
This can be illustrated with a simple example. Let V be a
volume divided into two subvolumes V1 and V2 such that V1
and V2 touch each other and exchange particles by diffusion.
The dynamical variables of interest are the total number of
particles in each subvolume, N1�t� and N2�t�. The goal is to
derive some kind of rate equation for N1�t� and N2�t�. We
focus on the flow from V1 to V2. In a small time interval �
one will have N1�t+���N1�t��1−���� and N2�t+���N2�t�
+�N1�t���, where � and � are numerical constants. The ef-
fective exchange rate that describes the flow from V1 into V2
is given by

k21�t� = lim
�→0

N2�t + �� − N2�t�
N1�t��

� lim
�→0

�−1/2, �36�

which is infinite. At any time instant t an infinite amount of
particles �per unit time� is rushing from V1 into V2 �and vise
versa�. However, the infinite flows from V1 to V2 and the

FIG. 6. The solution of Eq. �35� �solid line� is compared with a
solution of Eq. �55� �dashed line�. The solution of Eq. �45�, given in
Eq. �49�, is represented by the dotted line. The curves decaying and
growing describe N1�t� and N2�t�, respectively. The network struc-
ture is shown in the inset. The volumes of the tube and containers
are equal and a /�=0.05. The initial distribution of particles is
N1�0� /Ntot=1 and N2�0� /Ntot=0, where Ntot=N1�0�+N2�0�, indi-
cated by the shading in the inset. This figure clearly shows that Eq.
�49� does not lead to the correct values for N1�t� and N2�t�. The
agreement with Eq. �55� is much better.

FIG. 7. The natural logarithm of �N1�t�−N1���� /Ntot for the
three cases illustrated in Fig. 6. The labeling of the curves is the
same as in Fig. 6. The linear behavior is evidence of the single-
exponential decay of the number of particles in container C1. The
slope gives the value of the decay exponent. The slopes of the solid
and dashed lines are close to each other, showing that Eq. �55� is
capable of estimating the decay exponent well. The slope of the
dotted line differs significantly from the others which illustrates that
Eq. �49� cannot describe the dynamics in an adequate way. Since
the value of N1��� is not the same as in all three cases �compare Eq.
�51� and �52��, the value of N1�0�−N1��� will be different. This
explains why all three curves do not coincide at t=0.
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other way around cancel each other out, resulting in a finite
net flow giving smooth curves for N1�t� and N2�t�. t=0 is
special since there is no counterflow from V2 to V1 which

explains why limt→0 Ṅ1�t�=�.
The nonexponential regime grows with tube length � and

might play a significant role in studying transport processes
in networks having long connections. For large times ��t�
and ��t� start to dominate and one observes exponential de-
cay. It will be shown in Sec. V how to derive rate equations
that describe this regime.

V. ANALYSIS OF THE GENERAL RATE EQUATION:
EMERGENCE OF A SINGLE-EXPONENTIAL SOLUTION

It is intuitively clear that in the case of the two-node net-
work discussed in the previous section one should have an
exponential decay �growth� for the number of particles in the
container C1�C2� �see Figs. 6 and 7�: asymptotically the time
dependence of N1�t� and N2�t� is given by

N1,2�t� = N1,2��� + A1,2 exp�− t/�� , �37�

where �−1 is the decay exponent that governs the late-time
asymptotics and A1,2 is the amplitude of decay. This fact is
not easily predicted from the form of the general rate equa-
tion given in Eq. �3�. To understand the emergence of such
behavior a more thorough investigation of Eq. �46� is
needed.

To obtain the exact value of the decay exponent one has to
study the structure of poles of N1,2�s�. The poles fully deter-
mine the form of N1,2�t�=�p=0

� apespt where ap is the residue
of N1,2�s� at pole sp. The values of N1,2��� are determined by
the p=0 term �s0=0�. The exponential decay rate is deter-
mined by

�−1 = − s1. �38�

Rewriting Eqs. �29� in matrix form yields

sN� �s� − N� 0 = MN� �s� , �39�

where

N� �s� = �N1�s�,N2�s��T, N� 0 = �N10,N20�T �40�

and

M =
qD

�2 �−
Vtube

Vd�R1�
coth q

Vtube

Vd�R2�
1

sinh q

Vtube

Vd�R1�
1

sinh q
−

Vtube

Vd�R2�
coth q� , �41�

with q2=s�2 /D and Vtube=Vd−1�a��. The poles are calculated

from det�s−M�=0 since N� �s�= �s−M�−1N� 0 and �s−M�−1

�1/det�s−M�. Evaluating det�s−M�=0 gives

q2 + q� Vtube

Vd�R1�
+

Vtube

Vd�R2��coth q +
Vtube

2

Vd�R1�Vd�R2�
= 0.

�42�

Equation �42� is a transcendental equation and has many
solutions qp that determine the value of the poles sp

=qp
2D /�2 where p=1,2 , . . . ,� and in particular

s1 =
q1

2D

�2 , �43�

which, together with Eq. �38�, gives a relationship between
q1 and the decay rate �−1=−q1

2D /�2. Note that q2 has been
factored out from Eq. �42� and s0=0 �q0=0� is the additional
pole that determines the values of N1,2���. Also, note that q1

depends only on parameters describing geometry of the net-
work.

Apart from determining the structure of the poles, Eqs.
�39�–�41� are a good starting point for classifying various
schemes for obtaining approximative forms of the rate equa-
tions given in Eqs. �35�. Equations �35� do not have the form
of the general rate law stated in Eq. �18� �due to the presence
of the � terms�. Such a rate law would be easier to under-
stand intuitively. For example, the emergence of the single-
exponential decay could be seen more easily in Eq. �18� than
in Eqs. �35�. Also, an approximative form might be easier to
implement numerically, though at the cost of a lower accu-
racy at the end. The idea is to perform a small s expansion of
Eq. �39� based on a desired accuracy. In here we consider
two cases.

A. Lowest-order expansion

Performing the expansion

q coth q � 1,
q

sinh q
� 1, �44�

of M in Eq. �41� leads to a matrix that is constant, and
taking the inverse Laplace transform of Eq. �39� gives the
following set of rate equations:

Ṅ1�t� = − Ṅ2�t� = Vtube
D

�2� N2�t�
Vd�R2�

−
N1�t�

Vd�R1�� . �45�

These equations were already stated in Ref. �9�. It is inter-
esting to see that they emerge as a special case of the scheme
discussed here. Also, Eq. �45� can be obtained by following
another route. Performing partial integration of Eqs. �35�
with terms containing ��t� omitted leads to the exactly the
same form of rate equations as given in Eq. �45�. This pro-
cedure is discussed below.

The � terms are only present when the system is infinite.
Since the problem is finite, terms proportional to ��t� will be
subleading for large t. This can be seen from a small-s �large-
t� expansion of Eqs. �23� and �31�.1 Also, partial integration
of the � terms is impossible since the derivative of ��t� is
proportional to t−3/2 and diverges when t→0.

Omitting the � terms in Eqs. �35� and performing partial
integration leads to

1A small-s expansion of Eqs. �23� and �31� in Laplace transform
space yields L−1���s��� t−1/2 and L−1���s���const. Since ��t� and
��t� always combine in a sum, ��t� will dominate the outflow for
large t.
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Ṅ1�t� =
Vd−1�a�
Vd�R2� �0

t

dt�N2�t − t���̇�t��

−
Vd−1�a�
Vd�R1� �0

t

dt�N1�t − t���̇�t�� , �46a�

Ṅ2�t� =
Vd−1�a�
Vd�R1� �0

t

dt�N1�t − t���̇�t��

−
Vd−1�a�
Vd�R2� �0

t

dt�N2�t − t���̇�t�� . �46b�

Since �̇�t� is peaked for small t �see Fig. 5�, the contribu-
tion to the integrals �convolutions� stems mainly from small
values of t� which justifies the approximation

�
0

t

dt�N1,2�t − t���̇�t�� � N1,2�t��
0

t

dt��̇�t�� = N1,2�t���t� ,

�47�

where ��0�=0 was used. The same applies for ��t�. Using
Eq. �47� in Eq. �46� leads to

Ṅ1�t� =
Vd−1�a�
Vd�R2�

N2�t���t� −
Vd−1�a�
Vd�R1�

N1�t���t� , �48a�

Ṅ2�t� =
Vd−1�a�
Vd�R1�

N1�t���t� −
Vd−1�a�
Vd�R2�

N2�t���t� . �48b�

Inserting ���� and ���� found in Eq. �34� into Eq. �48�
yields Eq. �45�. This example shows how the � terms disap-
pear from the description when the system is finite. However,
contrary to the partial integration method, the expansion of
Eq. �39� gives a more systematic and controlled approach.

Equation �45� is simple and computationally efficient. It
could be easily used to describe large networks. However, it
has several drawbacks that can be identified. The solution to
Eq. �45� is given by

N1,2�t� − N1,2��� = �N1,2�0� − N1,2����exp�− t/�1,a� .

�49�

The decay rate �a
−1=−q1,a

2 D /�2 is determined by

q1,a
2 = −

Vtube�Vd�R1� + Vd�R2��
Vd�R1�Vd�R2�

. �50�

The number of particles in each container as t→� is

N1���
Vd�R1�

=
N2���
Vd�R2�

=
N10 + N20

Vd�R1� + Vd�R2�
. �51�

Equation �51� is not correct. The correct values for N1,2���
are given by

N1���
Vd�R1�

=
N2���
Vd�R2�

=
N10 + N20

Vd�R1� + Vd�R2� + Vtube
. �52�

The discrepancies between Eqs. �51� and �52� become in-
creasingly important for long tubes which are likely to occur
in large networks. For example, in a case where the tube and

reservoir volumes are equal, Eq. �51� predicts N1���
=N2���=Ntot /2, Ntot=N10+N20, while the exact result from
Eq. �52� is Ntot /3. The particle decay exponent given in Eq.
�50� only holds when Vtube→0. It strongly deviates from the
exact value when the tube is long �see Fig. 8�.

B. Higher-order expansion

Using the expansion

q coth q � 1 +
q2

3
,

q

sinh q
� 1 �53�

for M, inserting in Eq. �39�, and taking inverse Laplace
transform leads to a set of rate equations �given in Appendix
B� that are unsatisfactory due to the following reasons. First,
they predict a spurious jump in N1,2�t� as t→0 and the lim-
iting values N1,2��� are not correct. Second, the rate expo-
nent that results from these equations is not that accurate.
This particular example shows that it is important to have a
balanced expansion for elements of M. For example, instead
of expanding q coth q directly one has to expand sinh q and
cosh q separately in such a way that the same powers in the
nominator and denominator are obtained. When this strategy
is followed a much better approximation is obtained as
shown below.

The next-order expansion gives correct limits for N1,2�t�
when t→0 and t→� and leads to a relatively accurate value
for the decay exponent. Using the expansion

q coth q �
1 + q2/2

1 + q2/6
,

q

sinh q
�

1

1 + q2/6
, �54�

in M gives the following set of equations:

FIG. 8. Dependence of the geometrical factor q1
2 on the tube

volume. �The volumes of the containers are equal, Vd�R1�=Vd�R2�
�Vd.� q1

2 and �−1 are related through �−1=−q1
2D /�2. The numerical

solution of Eq. �42�, which gives exact values for q1
2, is represented

by the solid line. It is compared with the values for q1,a
2 �Eq. �50��,

dashed line, and q1,b
2 �Eq. �56��, dotted line. The dotted line deviates

significantly from the solid one as Vtube/Vd increases while the
dashed line follows the exact solution better. This indicates that q1,b

2

provides a good estimate of the decay rate, even for large tube
volumes. q1,a

2 can only be used for very small values of Vtube/Vd.
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Ṅ1�t� = − N1�t�
3D

�2

Vtube

Vd�R1�
+

12D2

�4

Vtube

Vd�R1��0

t

dt�N1�t − t��

�exp�−
6Dt�

�2  −
6D2

�4

Vtube

Vd�R2��0

t

dt�N2�t − t��

�exp�−
6Dt�

�2  , �55a�

Ṅ2�t� = − N2�t�
3D

�2

Vtube

Vd�R2�
12D2

�4

Vtube

Vd�R2��0

t

dt�N2�t − t��

�exp�−
6Dt�

�2  −
6D2

�4

Vtube

Vd�R1��0

t

dt�N1�t − t��

�exp�−
6Dt�

�2  . �55b�

Solving det�s−M�=0 to get hold of the decay exponent in
analytical form becomes in this case rather tedious since
finding the value q1 amounts to finding a root of a fourth-
degree polynomial. The calculation simplifies somewhat if
equal container volumes are considered, Vd�R1�=Vd�R2�
�Vd. In such a case one has

q1,b
2 = −

1

2Vd
�3�2Vd + Vtube� − �3�12Vd

2 − 4VdVtube + 3Vtube
2 �� .

�56�

The main findings of this section are summarized in Figs.
6–8. Figures 6 and 7 depict a numerical solution of Eq. �35�
�solid line� compared with the approximations discussed in
this section for a case where the tube and container volumes
are equal. Figure 8 shows a detailed analysis of the decay
rate.

For very short times there is a difference between Eqs.
�55� and �35� in Figs. 6 and 7. These arise due to the partial
elimination of � terms. For example, Eq. �55� does not pre-

dict limt→0 Ṅ1�t�=� �Fig. 6, the dashed line lies above the
solid line near t=0 for curves depicting N1�t��. This is the
reason why the curve for N1�t� obtained from Eq. �55� un-
derestimates the emptying of container C1. This effect is
more pronounced for the N1�t� coming from Eq. �49�. There,
the � terms are eliminated altogether �Fig. 6, the dotted line
depicting N1�t� lies above solid and dashed lines�. Also, Fig.
6 shows that there is a large error in N1,2��� for curves ob-
tained by Eqs. �45�.

In Fig. 7 the natural logarithm of �N1�t�−N1���� /Ntot is
shown. For short times the dynamics is not exponential but
after some time a straight line is attained which is evidence
of single-exponential behavior. The curve corresponding to
Eq. �49� �dotted line� does not predict the correct decay ex-
ponent which is manifested in a different slope. The decay
exponent predicted by Eq. �55� is a better estimate for the
decay rate: the slopes of the dashed and solid lines more or
less coincide. This fact is shown more clearly in Fig. 8.

Figure 8 depicts the dependence of q1
2 as a function of the

tube volume. The numerical solution to Eq. �42� �solid line�,
which gives the exact value of the decay exponent, is com-
pared to the values of q1,a

2 �dotted line� and q1,b
2 �dashed line�.

All three cases work well when Vtube→0. As the tube vol-
ume increases q1,a

2 deviates more and more from q1
2. The

same holds for q1,b
2 , though its value lies much closer to q1

2.
For example, when all volumes are equal q1=−1.71 and
q1,b

2 =−1.63 while q1,a
2 =−2.

In this section methods of finding rate equations and de-
cay exponents for the two container problem was deduced.
Figures 6–8 show that for increasing tube volumes the rate
equations given in Eq. �49� are not capable of describing the
dynamics. The approximation given in Eq. �55� works better.
For short-time dynamics none of the developed methods are
valid and the full rate equation �3� is the only alternative. In
the subsequent section all rate equations discussed up to this
point will be extended to work for any network structure.

VI. GENERAL EXPRESSION

In this section the results and methods obtained and de-
veloped for two-node network will be extended to work for
any network structure. The complete dynamics for the two-
node network is formulated in Eq. �35�. For an arbitrary net-
work the outflow �OUT� from container i to container j is
proportional to �ij�t�+�ij�t� and the inflow �IN� from con-
tainer j to container i is proportional to � ji�t�:

�OUT�i→j =
Vd−1�aij�
Vd�Ri�

�
0

t

dt�Ni�t����ij�t − t�� + �ij�t − t��� ,

�57a�

�IN� j→i =
Vd−1�aji�
Vd�Rj�

�
0

t

dt�N j�t��� ji�t − t�� . �57b�

This implies

Ṅi�t� = �
j�i

Cij��IN� j→i − �OUT�i→j�, i = 1, . . . ,M ,

�58�

where Cij is the conductivity matrix discussed in Sec. II. The
final result is stated in Eq. �3�.

It was argued earlier that if the tube volume is small, a
very simple first-order rate equation can be stated. It is found
in Eq. �45�. Extending this equation to the case of arbitrary
topology yields

Ṅi�t� = �
j�i

CijVd−1�aij�
Dij

�ij
� Nj�t�

Vd�Rj�
−

Ni�t�
Vd�Ri�

� . �59�

Note the symmetry relations aij =aji, �ij =� ji, and Dij =Dji.
If a more sensitive solution is desired, a set of equations

of the type �55� is suggested. An extension of this equation is
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�OUT�i→j = Ni�t�
3Dij

�ij

Vd−1�aij�
Vd�Ri�

−
12Dij

2

�ij
3

Vd−1�aij�
Vd�Ri�

�
0

t

dt� exp�− 6Dt�

�ij
2 Ni�t − t�� ,

�60a�

�IN� j→i =
6Dji

2

� ji
3

Vd−1�aji�
Vd�Rj�

�
0

t

dt� exp�− 6Djit�

� ji
2 Nj�t − t�� .

�60b�

Inserting Eq. �60� into Eq. �58� yields an approximative form
of rate equations for an arbitrary network.

In the previous section we investigated the differences
between Eqs. �57�, �59�, and �60� using the two-node net-
work as a study case �M =2�. It is expected that the findings
of the previous section also apply for larger networks. This
analysis is not conducted here. Having general expressions at

hand more complicated network structures can be investi-
gated. However, the assumption of well-stirred containers
will be discussed first since it is crucial for the derivation of
the rate equations �3�.

VII. ASSUMPTION OF IDEALLY MIXED CONTAINERS

An ideally mixed container has no concentration gradi-
ents. If a particle has entered, it can be found anywhere
within the compartment with equal probability. In reality, a
diffusing particle examines the compartment in a random
walk fashion until an opening is found. There it has a possi-
bility to escape and change the concentration. If the tube
radius is small �a /R1�, a significantly longer time is re-
quired to find an opening and escape than to examine the
majority of the compartment. The time needed to examine
the majority of the compartment is called mixing time and is
given by �mix=R2 /D. The time of finding a specific place or
target having radius a is given by �target= �R2 /D�R /a �15�.
For cubic compartments the radius of the sphere R is re-
placed by the edge length, in this case 2R �see Fig. 9�. Thus,
we argue that if aR, then �mix�escape and the containers
can be considered ideally mixed at all times.2 This is sup-
ported by numerics.

Figure 9�b� shows a numerical solution of the diffusion
equation in two dimensions in a geometry depicted in Fig.
9�a�. The solution clearly shows that the assumption of well-
stirred containers becomes very good for a /R1, even for
skewed initial distributions. The solution to the diffusion
equation was found using a standard implicit finite-
difference discretization method �16�.

In Fig. 9�b� one observes a systematic discrepancy: the
assumption of ideally mixed containers tends to overestimate
the decay rate. This derives from the fact that the assumption
of well-stirred containers over estimates the number of par-
ticles at the tube inlet, leading to a larger exit rate.

VIII. CASE STUDIES

Up to this point the two-node network was the only ex-
ample discussed. It was used as an elementary building block
when constructing the rate equation �3�. Such a network is
rather simple and does not offer any spectacular behavior. In
this section more complicated structures will be studied,
which are shown in Fig. 10 �and Fig. 17, below�: Two real-
izations of a three-node network are studied first, cases 1 and
2, depicted in Figs. 10�a� and 10�b�. They possess one more
level of complexity than the two-node network shown in Fig.
4. Case 3, Fig. 10�c�, is a four-node network that has a
T-shape structure. Case 4, Fig. 10�d�, has the shape of a star
and involves a tube junction. It will be shown that the trans-
port properties of this structure can be controlled in such way
that it might serve as a diffusion-based transistor. These
three- and four-node networks, despite being rather simple,

2�target is derived under the assumption of a fully absorbing target
of radius a. This is not a correct description of a tube opening since
it allows reentry. This estimate serves, however, as a worst-case
scenario.

FIG. 9. A numerical verification of the assumption of well-
stirred containers. For simplicity reasons a cubic geometry, as de-
picted in panel �a�, was chosen since the explicit shape of the con-
tainer loses its importance for large reservoir volumes. The edge
length is set to 2R where R is the radius of an equivalent spheric
container. Panel �b� shows a numerical solution to the 2D diffusion
equation �solid line� compared to a numerical solution to Eqs. �3�
�dashed line�. The cases are chosen so that a /R varies in three
orders of magnitude, showing increasing validity of the assumption
of ideally mixed containers as a /R decreases. The initial distribu-
tion in all three cases is skewed �a � function in the bottom right
corner of the left container� which becomes important when a is
large. For small a, �mix is a lot shorter than �target and the skewed
initial distribution will have time to smear out before particles start
exiting and the shape of the initial distribution has no effect.
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exhibit a large variety of outputs. Case 5 �Fig. 17, below�
demonstrates the transport properties for larger networks that
are impossible to predict without using Eq. �3�. When solv-
ing Eq. �3� numerically the containers and tubes are consid-
ered three dimensional. Moreover, the diffusion coefficients
Dij and the tube radii aij were kept the same for all tubes. All
graphs are scaled with the total number of particles in the
system, Ntot=�i=1

M Ni�0�.
Case 1: the line. Three reservoirs are lined up on a

straight line as depicted in Fig. 10�a�. The transport equa-
tions for this system can easily be written down using Eq. �3�
and are listed in Appendix C 1. A numerical solution is
shown in Fig. 11. This three-node system exhibits a new
characteristic that cannot be found in the two-node network.
The curve depicting the number of particles in the middle
container �solid line� has a maximum �an extremum� point.

The extremum point is a manifestation of an unbalance
between inflow and outflow in the middle container. This
unbalance derives from an asymmetry in the structure and
arises only when �12��23 or V1�V3. This provides the pos-
sibility of designing the output pattern through simple geo-
metrical changes in the structure. Figure 12 is a simple dem-
onstration of this design possibility where �12 is varied so
that the arrival time of the maximum of N2�t�, depicting the
number of particles in the middle compartment C2, is
changed. The picture also shows that an increase in �12 re-
sults in both an increased arrival time and a wider peak. The
height of the maximum is controlled by the value V2. A
decrease in V2 suppresses the peak and vice versa.

Case 2: the triangle. The connectivity of the line is

FIG. 10. Networks used for case studies in Sec. VIII. Panels
�a�–�d� correspond to cases 1–4.

FIG. 11. The transport properties of the structure depicted in
Fig. 10�a� �see Sec. VIII �case 1� for a discussion�. The curves
depict a numerical solution of Eqs. �C1� and �C2� given in Appen-
dix C 1. The curve depicting the number of particles in the middle
container C2 �solid line� has a maximum. This kind of behavior
does not exist for the two-node network where there is only expo-
nential growth and decay �see Fig. 6�. The network parameters were
set to �12=�23��, a /�=1/5, a /R1=1/10, a /R1=1/15, and a /R3

=1/20. The initial distribution of particles is N1�0� /Ntot=1 and
N2�0� /Ntot=N3�0� /Ntot=0, shown graphically in inset.

FIG. 12. The control of the particle arrival time for three differ-
ent cases shown in the inset: �=�1 �solid line�, � /�2=1/5 �dash-
dotted line�, and � /�3=1/10 �dashed line�. The system is otherwise
equivalent to the one studied in Fig. 11. The initial distribution of
particles is shown graphically in the inset.
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changed by adding an extra link between containers C1 and
C3 so that it forms the shape of a triangle, as shown in Fig.
10�b�. The rate equations are derived in Appendix C 2, and a
numerical solution is shown in Fig. 13. The initial distribu-
tion of particles �see the inset in Fig. 13� is chosen in such a
way that a minimum is produced in the curve depicting the
number of particles in container C2.

The extremum point can be enhanced or removed com-
pletely in the same way as was demonstrated for case 1. Such
a minimum will be absent unless the geometry and initial
distribution of particles are tailored in a specific way. In gen-

eral, such a sensitivity of geometrical changes and changes
in the location where particles are injected is observed for all
cases studied in this section.

The triangle structure studied here exhibits a shorter equi-
librium process than the linear structure considered previ-
ously �see Fig. 10�a��. In the case of a triangle structure
particles can spread more efficiently due to the additional
routing possibility C1→C3.

Case 3: the T-shape network. It is interesting to see how
the behavior of cases 1 and 2 changes when a new node is
added to the network. Here we study a situation where an
extra node C4 is connected to container C2 in the structure
depicted in Fig. 10�a�. In such a way one gets a T-shaped
�star� network shown in Fig. 10�c�. This alternation of struc-
ture leads to a significant change in behavior, as shown in
Fig. 14. When compared to cases 1 �one maximum� and 2
�one minimum� the curve depicting N2�t� exhibits an addi-
tional extremum point: both minimum and maximum are
present simultaneously. The right inset in Fig. 14 emphasizes
this fact.

This scheme could be carried out further, adding on more
and more reservoirs and adjusting the lengths and the initial
distribution so that the peaks arrive in consecutive order,
possibly produce an wavelike behavior. However, since the
spread of the peaks increases with increasing tube length, it
might be numerically quite difficult to see when the the ex-
tremum points occur or even if they actually exist.

Case 4: the junction. The next interesting network to con-
sider is the one with a junction present as depicted in Fig.

FIG. 13. The transport properties for the triangular network
shown in Fig. 10�b� �see Sec. VIII �case 2� for a discussion�. The
curves depict a numerical solution of Eq. �C4� given in Appendix C
2. The curve depicting the number of particles in C2 �solid line� has
a minimum. This does not occur in the transport dynamics for the
two-node network where there is only exponential growth and de-
cay �see Fig. 6�. The parameters were set to ���21, � /a=1,
�23/�=1/10, �31/�=50, and R1 /�=R2 /�=R3 /�=4. The initial dis-
tribution of particles is N1�0� /Ntot=1, N2�0� /Ntot=0.5, and
N3�0� /Ntot=0 as indicated by shading in the inset.

FIG. 14. The transport properties for the T-shaped network
shown in Fig. 10�c�, �see Sec. VIII �case 3� for a discussion�. The
curves depict a numerical solution of Eqs. �C6� and �C7� given in
Appendix C 2. The figure shows two extremum points in the curve
depicting the number of particles in container C2 �solid line�. It is
not possible to have this kind of behavior for any of the cases
studied involving two and three containers. The additional extre-
mum point was produced by adding an additional container C4 to
the middle container C2 in the linear structure shown in Fig. 10�a�.
The network parameters used were �12��, � /a=3, � /�23=1/2,
� /�24=10, and R1 /�=2. The initial distribution was set to
N1�0� /Ntot=2/3, N2�0� /Ntot=0, N3�0� /Ntot=0, and N4�0� /Ntot

=1/3 according to shading in the inset.

FIG. 15. The transformation from a four-node network to a net-
work involving a three-way junction.

FIG. 16. The transport properties for the network involving a
three-way junction shown in Fig. 10�d� �see Sec. VIII �case 4� for a
discussion�. The curves depict a numerical solution of Eqs. �C6�
and �C7� �with Vd�R4�=Vd�a��. The system parameters were set to
�12/a=2, �13/a=10, �14/a=20, R1 /a=2, and R2 /a=R3 /a=4. Ini-
tial distribution of particles, N1�0� /Ntot=1 and N2�0� /Ntot

=N3�0� /Ntot=N4�0� /Ntot=0, is shown in the inset.
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10�d�. A particular example of a three-way junction is stud-
ied. The network is built up by three reservoirs and three
tubes. The ends of the tubes coincide to form a junction. To
obtain the transport properties of such a network we start
from the structure studied in case 3 shown in Fig. 10�c�. The
junction is obtained by reducing the radius of container C2 in
the middle until its radius is roughly equal to the radii of the
surrounding tubes �see Fig. 15�. The rate equations describ-
ing the junction properties have the same form as the equa-
tions describing case 3 �listed in the Appendix C 3� with the
substitution Vd�R3�→Vd�a�. The equations are not given in
order to save space.

A numerical solution of the rate equations for the junction
is shown in Fig. 16. This structure allows control of the
particle flow between V1 and V3 by adjusting the volume V2
and length �24 �see Fig. 15�. This setup could function as a
diffusion-based transistor. For example, by making �24
shorter than �34, compartment C2 will initially attract diffus-
ing particles from C1 to a greater extent than C3, causing a
time delay in the particle arrival into container C3.

This fact is illustrated in Fig. 16 where the maximum in
the curve for the number of particles in container C2 �solid
line� indicates an initial accumulation of particles in C2:
N2�t� /Ntot rises from 0 to 0.5 in the interval t=0 to Dt /�2

=5. In this interval container C2 accumulates the majority of
the particles released from container C1. After the peak has
been reached the particles accumulated in C2 are released
into C3: N2�t� /Ntot continuously drops from value of 0.5 after
Dt /�2=5. By changing �24 the curve for N2�t� can be ma-
nipulated exactly in the same way as done in Fig. 12, but
such an analysis is not repeated.

For large networks involving junctions it might be desir-
able to decrease the number of equations required to solve
the transport problem. It is demonstrated in Appendix D that
the presence of junctions can be eliminated altogether when
investigating dynamics in the t→� regime for structures
having large container volumes �aRi, i=1, . . . ,M�. Equa-
tions �D8�–�D10� show this explicitly for the three-node
junction studied here.

The four cases studied up to now show that the transport
dynamics is very sensitive to geometrical changes and to the
locations where particles are injected. Small variations in
tube lengths and container volumes lead to unpredictable

FIG. 17. Structure of the network studied in Sec. VIII �case 5�.
The parameters describing the geometry are labeled in the same
way as in Fig. 10. The parameters used were a /�=1/3, �23/�=1,
�45/�=9, �43/�=10, �35/�=8, �36/�=2, �28/�=0.1, �12/�=1,
�32/�=1, R1 /a=4, R2 /a=2, R3 /a=1, R4 /a=2.5, R5 /a=3, R6 /a
=2, R7 /a=2, and R8 /a=4.

FIG. 18. The solution of Eq. �3� for the network depicted in Fig.
17. The panel includes graphs showing the transport dynamics for

three different choices of initial distribution of particles. �a� Ñ1�0�
= Ñ2�0�= Ñ3�0�= Ñ4�0�= Ñ5�0�=0, and Ñ6�0�= Ñ7�0�= Ñ8�0�=1/3.

�b� Ñ3�0�= Ñ5�0�= Ñ6�0�=0, Ñ2�0�= Ñ8�0�=1/8, and Ñ1�0�= Ñ4�0�
= Ñ7�0�=1/4; �c� Ñ3�0�= Ñ5�0�= Ñ6�0�=0, Ñ1�0�= Ñ7�0�=1/8, and

Ñ2�0�= Ñ4�0�= Ñ8�0�=1/4, where Ñi�t�=Ni�t� /Ntot, i=1, . . . ,8. The
initial conditions are also illustrated in the insets: a darker shading
indicates that more particles are injected into the container.
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changes in curves depicting the time dependence of the num-
ber of particles in each container �Figs. 11, 13, 14, and 16�.
Also, the shapes of the curves differs significantly from a
single exponential decay.

Case 5: large network. Following the methods described
in this paper one could easily study diffusive transport in
networks containing hundreds or thousands of containers,
tubes, and junctions. The computational cost scales linearly
with both the number of containers and number of tubes
�assuming full connectivity of the containers�. We do not
show explicit example with such large number of containers.
To demonstrate the power of the method we study a more
pedagogical example, the case of a network that is built up
by seven containers, nine tubes, and a four-way junction. In
contrast to the previous cases shown in Fig. 10 it is impos-
sible to predict the transport behavior of such a network
without a numerical calculation.

For the network depicted in Fig. 17, Figs. 18�a�–18�c�
show numerical solutions of Eq. �3�. Different initial distri-
butions are used and are introduced into the inset of all fig-
ures. The darker the container appears, the more particles are
injected into it. The dynamics is evidently quite complex,
and all possible characteristics that were forced upon the
other cases are present. There is an exponential growth and
decay as well as curves having one or more extremum
points. The different transport behavior shown in Fig. 18
stem only from different initial conditions. If the structure no
longer remained fixed, even more complicated patterns could
be produced; only imagination sets the limits.

IX. CONCLUDING REMARKS

We introduced a generic model for diffusive particle
transport in large networks made of containers and tubes.
The diffusion equation that describes the distribution of par-
ticles, ��r� , t�, throughout the network was taken as a starting
point. Instead of calculating ��r� , t� explicitly, we followed
another route and developed a theoretical technique to solve
the transport problem using a finite number of variables
N1�t� , . . . ,NM�t� that describe the number of particles in each
container. First, a set of rate equations was derived for the
two-node network and, second, they were generalized to
work for an arbitrary network structure. In such a way we
obtained the rate equations that govern the dynamics of
N1�t� , . . . ,NM�t�. These equations are summarized in Eq. �3�
and are the central result of the paper.

The transport equations were found by study the exchange
of chemicals between the container and tube. It was demon-
strated in Sec. III how to couple the dynamics in the contain-
ers and tubes, as stated in Eqs. �6� and �8�–�10�. However,
the coupling is too complicated to be carried out in practice
in the original form. Several approximations were made in
order to make such a scheme doable.

The tubes were assumed to be one-dimensional lines �see
Eq. �8��, and the transport in the tubes was described in terms
of a one-dimensional diffusion problem involving the con-
centration profile along the line c�x , t�. The expression for
c�x , t� can be found analytically using, e.g., the Laplace

transform technique. In such a way the tubes were eliminated
from the problem.

We have considered diffusive noninteracting point par-
ticles, which is a plausible assumption for dilute solutions.
One could consider the situation when the particles disturb
each other. In that respect, the region of the tube interior is
the most critical since the tubes can be very narrow and
exclusion effects will be mostly pronounced in there. Such
effects could be added into the theoretical description by
using results obtained from studies on diffusion with exclu-
sion in one-dimensional systems �17–19�. We expect a very
different transport behavior when the diameters of the tubes
become comparable in size to those of the particles.

The dynamics in the container is not tractable analytically
but it was argued that when the tube radii are smaller than
any other length scales in the system �e.g., tube lengths or
container radii� the containers can be treated as ideally mixed
at all times. This assumption was verified numerically in Sec.
VII and simplifies all intracontainer dynamics to one dy-
namical variable: the total number of particles in a given
compartment.

Evidently much of the container dynamics has been ne-
glected but the coupling is formulated in such a way that a
more detailed description can be developed should there be a
need for that. For example, the container dynamics could be
better treated by using the techniques presented in, e.g., �9�
or by further exploration of the coupling equations �6� and
�8�–�10�. For example, one could keep the second term on
the right-hand side of Eq. �12� and use ��0,y ,z , t�
=N�t� /Vd�R�−J�t� /4Dca instead of ��0,y ,z , t�=N�t� /Vd�R�.
This procedure would lead to similar rate equations as pre-
sented here with different forms for ��t�, ��t�, and ��t�.

Initially the particles feel as if they are escaping from the
container into an infinitely long tube. In this regime the num-
ber of particles in the container decays nonexponentially. We
have identified terms in the rate equations describing this
behavior: all terms in Eq. �3� proportional to ��t� dominate
when time is small. This nonexponential regime grows with
increasing tube length, and the crossover time for this regime
scales as �2 /D. Also, terms containing ��t� contain solely a

dependence on Ṅi�t� and cannot be rewritten in a form that
would involve Ni�t�. Accordingly, it is impossible to rewrite
Eq. �3� so that it adopts the form of a general rate law �see
Eq. �18��. These issues were discussed in Sec. III. The bottle-
neck lies in the definition of the transport rate which, in
principle, is an ill-defined quantity �see the discussions at the
end of Secs. III and IV�.

Eventually, for large times the decay is exponential. In
such a regime the term proportional to ��t� can be neglected
in the rate equation �3�. Other terms proportional to ��t� and
��t� can be rewritten in the form of a general rate law, lead-
ing to Eqs. �59� and �60�. We showed that Eq. �59� is a
special case of the general approximation scheme developed
in Sec. V: starting from rate Eq. �3� in Laplace transform
space we developed a series of approximations that can be
used to systematically describe the asymptotic regime, re-
sulting in Eq. �60�. Also, we have developed a procedure that
can be used to eliminate junction points for large times
which reduces the number of variables further �see Appendix
D�.
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Already simple case studies that were used to illustrate
the workings of the method exhibit interesting behavior. For
example, one can identify three types of curves that appear in
the plots depicting the time dependence of the particle num-
ber in each container �Figs. 11–14 and 16�. Type-I curves
occur for the two-node network. These lack extremum
points, and the particle number either strictly rises or drops
to saturate to asymptotic values. Type-II curves have one
maximum or minimum, and type-III curves can have more
and these are the most interesting. Type-II and -III curves
normally describe the particle number for the container in the
network interior.

The existence of type-I curves for large networks suggests
that it could be possible to understand the transport between
two nodes in terms of an effective two-node network where a
complicated structure of links and containers in between two
nodes is mapped onto an effective link connecting them. One
can raise a more general question: what is the smallest net-
work that would have the same transport properties as some
substructure of a given large network? For example, if one is
interested in only three nodes of the structure depicted in Fig.
17—e.g., C5, C7, and C8—is there a star-type network—e.g.,
such as the one depicted in Fig. 10�c� or 10�d�—that would
have equivalent transport properties?

The presence of type-II and -III curves indicates the pos-
sibility that there might be curves that possess a larger num-
ber of extremum points. These are likely to occur in larger
networks. We can of course manually enhance certain prop-
erties such as the height and width of peaks. This will, how-
ever, become more and more complicated as the network
size increases. The problem is that the peaks that occur later
have a larger width and might be harder to see. For design
purposes, it is therefore necessary to build a learning mecha-
nism or a search engine, on top of our existing software, to
select certain characteristics in the curves depicting the time
evolution of N1 , . . . ,NM. Furthermore, to exploit such effects
one has to amplify them in some way. At the moment our
study deals with transport only, but reactions in the contain-
ers can be included as well, and they could be tailored to
amplify such effects �e.g., by choosing a reaction of enzy-
matic type�.

The techniques developed in this work can be used to
study transport in various systems. In the following we give
a few examples.

�i� Although we exclusively study transport, our model
can serve as a platform for reaction-diffusion-based biocom-
puting devices �4–6,20–34�. In particular, our work is appli-
cable to studies of the reaction-diffusion neuron �28–34�.
The reaction-diffusion neuron is an two-dimensional array of
compartments that exchange chemicals by diffusion.

�ii� A large number of processes happening in the cell are
governed by transport of reactants and chemical reactions. In
order to avoid a need for excessive storage facilities the
chemical compounds are routed in an orderly fashion be-
tween various places within and between the cells and the
chemical components arrive exactly at the right place at the
right time �15,35�. The setup in Fig. 1 captures this aspect of
the cell interior.

�iii� The transport on abstract mathematical networks
�nodes and links� has been studied extensively �36,37�. Such

studies are geometry free with emphasis on the topology of
the network graph �the connectivity pattern, the average
number of neighbors, etc.�. The techniques developed in this
work could be used to account for the fact that the links
between the nodes have physical length and the transport
along the links is not instantaneous.

In summary, the work we have presented is a step towards
understanding the transport properties of large networks
where geometrical concepts such as the length of the tubes
play an important role. The setup employed in this study is
rather simple. In order to be able to focus on issues related to
transport, the reactions are totally omitted. The concentration
profile in containers is assumed flat, and this is good approxi-
mation when the tubes are thin. Already simple examples of
the networks we studied show a number of interesting prop-
erties. For example, the transport properties of the networks
exhibit a large sensitivity to geometrical changes in the struc-
ture. Also, one can adjust the structure to obtain wavelike
behavior �with one or two extremum points� in the curves
that depict the number of particles in containers. When the
complexity of the network increases one can expect even
more complicated behavior with a larger number of extre-
mum points. The setup we use is generic, and it is possible to
expand the model in many ways—e.g., by improving de-
scription of intracontainer dynamics, incorporating reactions,
or allowing particles to disturb each other. It will be an in-
teresting problem to try to explore these questions further.
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APPENDIX A: NUMERICAL CONSIDERATIONS

In this section the numerical solution of Eq. �3� is dis-
cussed. In Secs. III and IV it was shown that the time deriva-

tives Ṅi�t� , . . . , ṄM�t� can be infinite at t=0 which may cause
numerical difficulties. However, the singular part of the de-
rivative can be factored out by making the substitution

Ṅi�t� = − �	t�−1/2�i�t�, i = 1, . . . ,M , �A1�

where �i�t� is a smooth function of time. For small t the
particles in the containers do not �yet� “feel” the presence of
another side and behave as if entering an infinitely long tube.
An expression describing the transport behavior for such a
case was found analytically and is stated in Eq. �20�. The
time derivative of Eq. �20� is proportional to t−1/2 for small t.
Inserting Eq. �A1� into Eq. �3� yields an equation for �i�t�
that was used for numerical calculations:

�i�t� = �
j=1

M

C ji
Vd−1�aji�
Vd�Rj�

�� t

	
�

0

t dt�
�t�

� j�t��� ji�t − t��

+ �	tNj�0�� ji�t�� − �
j=1

M

Cij
Vd−1�aij�
Vd�Ri�

��� t

	
�

0

t dt�
�t�

�i�t���ij�t − t�� +
�Dijt
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��
0

t dt�
�	t�t − t��


�i�t�� + �	tNi�0���ij�t� + �ij�t��� .

�A2�

Note that the expression for �ij�t� has been inserted into the
integrals. Combining Eq. �20� and �A1� leads to

�i�t� = Ni0 − �	t�1/2Ni�t�, i = 1, . . . ,M , �A3�

and sets the initial condition �i�0�=Ni0.
From Eq. �A2� two types of integrals can be identified:

I1
tn��� = �

0

tn dt�
�t��tn − t��

��t�� ,

I2
tn��� = �

0

tn dt�
�t�

��t�� , �A4�

where ��t� is nonsingular in the range of integration. The
quadrature formulas derived to solve I1

tn��� and I2
tn��� are

based on the methods described in �38�. The idea is that the
singular part of the integrand, t�−1/2 and �t��tn− t���−1/2, re-
spectively, is treated exactly while the smooth part �i�t�� is
linearly interpolated between ti and ti+1. The resulting
quadrature formulas are of the form

Ii
tn��� � �

j=0

n

wnj��tj�, i = 1,2, �A5�

where wnj are weights, n=1,2. . ., and tn=nh. This quadrature
formula becomes exact when ��t� is piecewise linear. Calcu-
lating weights for I1

n��� yields

wn0 = �n − 1 − �n − 2�arcsin�1

n
,

wij = ��j − 1��n − j + 1� + ��j + 1��n − j − 1� − 2�j�n − j�

+ 2� j + 1 −
n

2
�arcsin� j − 1

n
− 2 arcsin� j

n

+ arcsin� j + 1

n
� ,

wnn = �n − 1 + 	�1 −
n

2
 + �n − 2�arctan �n − 1. �A6�

Calculating weights for I2
n��� yields

wn0 =
4h1/2

3
,

wnj =
4h1/2

3
��j + 1�3/2 − 2j3/2 + �j − 1�3/2� ,

wnn =
2h1/2

3
�n3/2 − 3�n − 1�1/2 + 2�n − 1�3/2� . �A7�

Finally, an expression for the total number of particles is
found by integrating Eq. �A1�:

Ni�t� = Ni�0� − �
0

t dt�
�t�

�i�t��, i = 1, . . . ,M . �A8�

Ni�t� , . . . ,NM�t� are found by using the quadrature formula
derived for I2

n���.

APPENDIX B: FINDING A SET OF APPROXIMATIVE
RATE EQUATIONS FROM AN EXPANSION OF Eq. (39)

IN THE VARIABLE s

In this appendix, details for obtaining a set of a first-order
rate equations from Eq. �39� will be outlined. The dynamical
equations are found by approximating M given in Eq. �41�.
M is approximated by using the expansion stated in Eq.
�53�. The inverse Laplace transform of Eq. �39� after ap-
proximation reads

Ṅ1�t� =
3Vd�R1�Vtube

3Vd�R1� + Vtube

D

�2� N2�t�
Vd�R2�

−
N1�t�

Vd�R1��
− ��t�

Vtube

3Vd�R1� + Vtube
N10, �B1a�

Ṅ2�t� =
3Vd�R2�Vtube

3Vd�R2� + Vtube

D

�2� N1�t�
Vd�R1�

−
N2�t�

Vd�R2��
− ��t�

Vtube

3Vd�R2� + Vtube
N20. �B1b�

The decay rate predicted by these equations is given by
�1,b�

−1 =−�2 /q1,b�
2 D where

q1,b�
2 = −

Vtube�Vd�R1� + Vd�R2��
Vd�R2��Vd�R1� + Vtube/3�

. �B2�

This decay exponent is not adequate. For example, in the
case where all volumes are equal q1,b�

2 =−1.5 while the exact
value is qexact=−1.71.

The rate equation �B1� cannot describe the behavior of
N1,2�t� as t→� and t→0: the values for N1,2��� are given by

N1���
Vd�R1�

=
N2���
Vd�R1�

=
N10 + N20

Vd�R1� + Vd�R2� +
2

3
Vtube

�B3�

and for N1,2�0+� there is a sudden jump,

Ni�0+� =
Ni0

1 + Vtube/3Vd�Ri�
, i = 1,2, �B4�

and Ni�0+��Ni�0�. This is not satisfactory, and another type
of expansion is needed if correct limits and better decay rates
are to be found.

APPENDIX C: RATE EQUATIONS FOR THE CASE
STUDIES

This appendix explains in more detail how to derive the
rate equations used in the cases studies in Sec. VIII. The
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equations are obtained from Eq. �3�. Also, Eq. �59� is used to
illustrate the impact on dynamics from changes in the net-
work structure in a less complicated form. The Ni�t�, �ij�t�,
�ij�t�, and �ij�t� are defined in Sec. II. The initial distribution
is set to be Nj�0�=Nj0 where j=1, . . . ,M and M is the total
number of nodes in the system. Note the symmetry relations
aij =aji, �ij =� ji, and Dij =Dji, which imply that �ij�t�=� ji�t�,
�ij�t�=� ji�t�, and �ij�t�=� ji�t� �see Eq. �5��.

1. Line

The structure of the linear network studied here is shown
in Fig. 10�a�. Containers C1 and C3 are connected only to the
middle container C2. Therefore, the rate equations describing
the dynamics in each container, N1�t� and N3�t�, respectively,
have a similar form

Ṅi�t� =
Vd−1�a2i�
Vd�R2� �0

t

dt�N2�t���2i�t − t��

−
Vd−1�ai2�

Vd�Ri�
�

0

t

dt�Ni�t����i2�t − t�� + �i2�t − t���,

i = 1,3. �C1�

The middle container C2 is connected both to container C1
and C3. The rate equation for N2�t� reads

Ṅ2�t� =
Vd−1�a12�
Vd�R1� �0

t

dt�N1�t���12�t − t��

+
Vd−1�a32�
Vd�R3� �0

t

dt�N3�t���32�t − t��

−
Vd−1�a21�
Vd�R2� �0

t

dt�N2�t����21�t − t�� + �21�t − t���

−
Vd−1�a23�
Vd�R2� �0

t

dt�N2�t����23�t − t�� + �23�t − t��� .

�C2�

Equations �C1� and �C2� have a quite complicated structure
and impacts on the dynamics of N1�t�, N2�t�, and N3�t� due to
the fact that changes in the structure �e.g., tube lengths and
container volumes� are not easily predicted. Simpler expres-
sions can be obtained by using Eq. �59� which is valid in the
large-time limit under the assumption that the number of
particles in the tubes is negligible over time. Applying Eq.
�59� leads to

Ṅi�t� =
Vd−1�a2i�
Vd�R2�

D

�2i
N2�t� −

Vd−1�ai2�
Vd�Ri�

D

�i2
Ni�t�, i = 1,3,

Ṅ2�t� =
Vd−1�a12�
Vd�R2�

D

�12
N1�t� +

Vd−1�a32�
Vd�R3�

D

�32
N3�t�

−
D

Vd�R2��Vd−1�a12�
�12

+
Vd−1�a23�

�23
�N2�t� . �C3�

2. Triangle

The triangular network studied here is depicted in Fig.
10�b�. All containers C1, C2, and C3 are connected to each
other and therefore the rate equations describing the time
evolution of N1�t�, N2�t�, and N3�t� have the same form.
Equation �C4� is the rate equation that governs the dynamics
in container C1. The corresponding dynamical equations for
N2�t� and N3�t� are obtained in the same way but are not
written down here:

Ṅ1�t� =
Vd−1�a21�
Vd�R2� �0

t

dt�N2�t���21�t − t��

+
Vd−1�a31�
Vd�R3� �0

t

dt�N3�t���31�t − t��

−
Vd−1�a12�
Vd�R1� �0

t

dt�N1�t����12�t − t�� + �12�t − t���

−
Vd−1�a13�
Vd�R1� �0

t

dt�N1�t����13�t − t�� + �13�t − t��� .

�C4�

The behavior of N1�t�, N2�t�, and N3�t� is very sensitive to
changes in the network structure. The response from these
changes are not easily predicted by Eq. �C4�. Instead Eq.
�59� can be used to state a simplified version of Eq. �C4�.
Note that this equation only is valid in the large-time limit if
the number of particles in the tubes is small. Applying Eq.
�59� to container C1 in the triangular network gives

Ṅ1�t� =
Vd−1�a21�
Vd�R2�

D

�21
N2�t� +

Vd−1�a31�
Vd�R3�

D

�31
N3�t�

−
D

Vd�R1��Vd−1�a12�
�12

+
Vd−1�a13�

�13
�N1�t� . �C5�

Corresponding first-order rate equations for N2�t� and N3�t�
are found in the same way.

3. T network

The T-shaped network under investigation in this subsec-
tion is depicted in Fig. 10�c�. Since all containers C1, C2, and
C3 are connected to container C4 and not to each other, the
rate equations governing the dynamics in C1, C2, and
C3—that is, N1�t�, N2�t�, and N3�t�, respectively—all have a
similar form

Ṅi�t� =
Vd−1�a4i�
Vd�R4� �0

t

dt�N4�t���4i�t − t��

−
Vd−1�ai4�

Vd�Ri�
�

0

t

dt�Ni�t����i4�t − t�� + �i4�t − t���,

i = 1,2,3. �C6�

The middle container C4 has connections to all other contain-
ers C1, C2, and C3. This leads to a rate equation for N4�t� of
the form
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Ṅ4�t� = �
j=1

3
Vd−1�aj4�

Vd�Rj�
�

0

t

dt�N j�t��� j4�t − t��

−
1

Vd�R4��0

t

dt�N4�t��

� �
j=1

3

Vd�a4j���4j�t − t�� + �4j�t − t��� . �C7�

The rate equations derived in this subsection are used in the
study of the junction, shown in Fig. 15.

APPENDIX D: ELIMINATION OF JUNCTIONS IN THE
ASYMPTOTIC REGIME

The network studied in this section is a generalization of
the one depicted in Fig. 15. Here, a junction having an arbi-
trary number of connections is studied and it will be demon-
strated that the dynamical equations governing the transport
in a system having junction points can be simplified in the
large time limit. First, it will be shown that the current of
particles in and out of a junction point eventually will bal-
ance each other out and that this occurs faster than the time it
takes before an equilibrium particle distribution is attained
throughout the network. This derives from the fact that the
volume of the junction �proportional to ad� is much smaller
than the volumes of the containers �proportional to Ri

d, i
=1, . . . ,M�, where d is the dimensionality, a is the tube ra-
dius, and M is the number of containers. The tubes connect-
ing the junction are assumed to have the same radius. Sec-
ond, it will be demonstrated how to simplify the transport
equations in such a way that the dynamical variable for the
junction N�t� can be eliminated completely. This might be
desirable when working with large networks.

Consider a junction with dynamical behavior contained in
Nj�t� and volume Vd�a� that has connections to M containers
with volumes Vd�Ri�, i=1, . . . ,M. The equation governing
the dynamics of the junction point written in Laplace space
reads

sNj�s� − Nj�0� = − sNj�s�
Vd−1�a�
Vd�a� �

i=1

M

�� ji�s� + � ji�s��

+ �
i=1

M

sNi�s�
Vd−1�a�
Vd�Ri�

�ij�s� . �D1�

This equation is a generalization of Eqs. �29� �see Sec. VI�.
The junction point studied here is such that aRi, and since

Vd−1�a�
Vd�a�

= cd
1

a
,

Vd−1�a�
Vd�Ri�

= cd
1

a
� a

Ri
d

, �D2�

where

cd =
d

d − 1

�d

2
�
�d − 1

2
�−1

	−1/2

�found by using the formula for a d-dimensional sphere; see
Sec. II�, the term proportional �a /Ri�d can be neglected and a
closed expression for Nj�s� can be obtained. Solving Eq.
�D1� after eliminating the second term leads to

Nj�s� =
Nj�0�

s�1 +
cd

a
�i=1

M
�� ji�s� + � ji�s�� . �D3�

The inverse Laplace transform of Nj�s� is a sum of exponen-
tials,

Nj�t� = �
p=1

�

�pe−�pt, �D4�

where �p is the residue of Nj�s� at pole s=−�p, �p�R�0.
The poles are given by the zeros of

s + cd�
i=1

M
qijDij

a�ij

cosh qji

sinh qij
= 0, �D5�

where qij
2 =s�ij

2 /Dij. When the currents in and out of the junc-
tion point balances each other out there is no accumulation

of particles and Ṅj�t�=0. This is easily verified from Eq.
�D4� by evaluating the derivative in respect to t at t=�:

d

dt
Nj�t� = �

p=1

�

�− �p��pe−�pt → 0 as t → � . �D6�

Let �junction be an estimate of the time it takes until Ṅj�t�=0.
It is related to the decay exponents �p �see Eqs. �38� and
�43�� which are zeros of Eq. �D5�. From Eq. �D5� it is clear
that the zeros scales with D /a� �it is assumed that Dij �D
and �ij ��� which leads to the estimate �junction�a� /D. Let
�network be an estimate of the time it takes to reach an overall
equilibrium particle distribution in the network. As a rough
estimate Eq. �50� can be used which was found for a two-
node network. If the containers have volumes proportional to
Rd, then

�network �
a�

D
�R

a
d

.

If R�a, then �junction�network. This is is supported by the
numerical calculation shown in Fig. 16 where the curve cor-
responding to N4�t� flattens out relatively fast.

For networks where there are many junctions and contain-
ers involved it might be desirable to reduce the number of
variables in the dynamical equations governing the particle

transport. This can be done in the regime where Ṅj�t�=0 is
valid and Eq. �59� is applicable. Applying Eq. �59� for a

junction point j having M connections and using Ṅj�t�=0
leads to

0 = �
i=1

M

CijVd−1�a�
Dij

�ij
� Ni�t�

Vd�Ri�
−

Nj�t�
Vd�a�� . �D7�
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In this way it is possible to express Nj�t� in terms of
N1�t� , . . . ,NM�t�. Inserting the solution to this matrix equa-
tion in the dynamical equations eliminates the explicit de-
pendence of Nj�t�. Equations �D8�–�D10� show this explic-
itly for the case of a three-way junction depicted in Fig. 15,
where N4�t� has been taken away completely:

Ṅ1�t� =
�24D

�2

Vd−1�a�
Vd�R2�

N2�t� +
�34D

�2

Vd−1�a�
Vd�R3�

N3�t�

−
��24 + �34�D

�2

Vd−1�a�
Vd�R1�

N1�t� , �D8�

Ṅ2�t� =
�14D

�2

Vd−1�a�
Vd�R1�

N1�t� +
�34D

�2

Vd−1�a�
Vd�R3�

N3�t�

−
��14 + �34�D

�2

Vd−1�a�
Vd�R2�

N2�t� , �D9�

Ṅ3�t� =
�14D

�2

Vd−1�a�
Vd�R2�

N1�t� +
�24

�2

Vd−1�a�
Vd�R2�

N2�t�

−
��14 + �24�D

�2

Vd−1�a�
Vd�R3�

N3�t� ,

�2 � �14�24 + �24�34 + �14�34. �D10�
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